TEE-908 Advance Turbomachinery Applications

1. <u>Course Objectives</u>

- a. To develop fundamental understanding of various turbomachinery systems and their applications.
- b. To understand the theoretical concepts and practical aspects of turbomachinery design and development process.
- c. To train the researchers for advance level of turbomachinery design and development involving computational and experimental methods.
- d. To identify modern energy conversion systems advantageous for Pakistan's energy sector.
- e. Generate scientific knowledge and expertise in the field of turbomachinery.

Course Contents

6. Contents with suggested contact hours

No.	Topics	Contact
		Hours
a.	Overview of Turbomachinery	
	Governing laws	
	Euler turbomachinery equation	
	Incompressible and compressible flow	
	relations	
	Compressor and turbine efficiencies	6
	Irreversibility and losses	b
	Velocity diagram and work transfer	
	Dimensional performance of	
	turbomachinery	
	Design and off-design performance	
	characteristics	
b.	Compressor Aero-Thermodynamics	
	Introduction to compressors	
	Axial flow compressors	6
	Radial flow compressors	
	Stall and surge phenomena in	

	compressors		
	Mean-line and three-dimensional		
	design		
	Mechanical design features Turbing Agra Thermodynamics		
C.	Turbine Aero-Thermodynamics		
	Introduction to turbines		
	Axial flow turbines		
	Radial flow turbines	6	
	Turbine blade cooling		
	Mean-line and three-dimensional		
	design		
	Mechanical design features		
d.	Gas Turbine Application		
	Gas turbine cycles		
	Industrial gas turbine design and		
	features		
	Propulsion gas turbine design and	5	
	features	3	
	Design and off-design performance		
	Support systems, combustion,		
	transmission		
	Recent developments and challenges		
e.	Automotive Application		
	Introduction to IC engines		
	Turbocharging methods for IC engines		
	Turbocharger system and	5	
	components		
	IC Engine-Turbocharger matching		
	Recent developments and challenges		
f.	Wind Energy Application		
	Introduction to Wind Energy	3	
	Wind turbine design and components		
<u> </u>			

		T
	Actuator disk and blade element	
	theories	
	Environmental matters	
	Recent developments and challenges	
g.	Hydropower Application	
	Hydroelectric, tidal, ocean, wave	
	power	
	Hydraulic turbines – Pelton, Francis,	3
	Kaplan	
	Design and performance	
	Recent developments and challenges	
h.	Small-Scale Turbomachinery	
	Application	
	Microturbine technology	
	Heat pump turbocompressor	3
	technology	3
	Organic Rankine cycle (ORC)	
	turbogenerator technology	
	Recent developments and challenges	
i.	Computational Fluid Dynamic (CFD)	
	Practices for Turbomachinery Design	
	Introduction to CFD for	
	turbomachinery	4
	Steady and unsteady CFD	4
	applications	
	Design optimization and CFD	
	Recent developments and challenges	
j.	Experimental Techniques for	
	Turbomachinery	
	Experimental facility features	4
	Instrumentation, calibration, accuracy,	
	and uncertainty	
		•

Data collection and processing	
Recent developments and challenges	
Total	45

Outcomes

- 3. By the end of this course students will be able to:
 - a. Perform design and development activities for different energy conversion systems.
 - b. Familiarize with modern developments in the field of turbomachinery.

4. Recommended Reading (including Textbooks and Reference books).

S.	Title	Author(s)	Remarks
No.			
a.	Fluid Mechanics and Thermodynamics of Turbomachinery	S.L. Dixon	Text Book
b.	Gas Turbine Theory	H.I.H. Saravanamutto, G.F.C. Rogers, H. Cohen	Reference Book
C.	Alternative Energy Sources	E.E. Michaelides	Reference Book
d.	Internal Combustion Engine Fundamentals	J.B. Heywood	Reference Book
e.	Turbocharging the Internal Combustion Engine	N. Watson, M.S., Janota	Reference Book
f.	Fundamentals of Turbocharging	N.C. Baines	Reference Book
g.	Wind Power Plants	R. Gasch, J. Twele	Reference Book

h.	Solar Energy Engineering	S. A. Kalogirou	Reference Book
i.	Microturbines	C. Soares	Reference Book
j.	An Introduction to Computational Fluid Dynamics	H.K. Versteeg, W. Malalasekera	Reference Book
k.	Advanced Experimental Techniques in Turbomachinery	D. Japikse	Reference Book
I.	Measurement Techniques in Fluid Dynamics	J. Anthoine, T. Arts, R.A. van den Braembussche	Reference Book
m.	Elements of Propulsion	J.D. Mattingly	Reference Book
n.	Unsteady Computational Fluid Dynamics in Aeronautics	P.G. Tucker	Reference Book

5. Recommended journals:

- a. Journal of Turbomachinery
- b. Journal of Engineering for Gas Turbines and Power
- c. Journal of Applied Energy